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The problem of buoyancy-induced Stokes flow in a sectorial region is addressed. 
Skew-symmetric flows are considered for wedge or opening angles of the sector in the 
range 0 < a < R. The basic structure and character of the motion are found to depend 
critically upon the relative dominance, near the sector vertex, of the particular 
solution of the system with respect to the leading eigenfunction. A simple criterion 
is developed for the appearance of eddies, such as those observed by Moffatt (1964), 
in the neighbourhood of the sector vertex. A calculation is carried out for the specific 
case of motion induced by different temperatures on the radial boundaries of the 
enclosure. It is found that corner eddies may be present in this circumstance for 
wedge angles in the range 126" 5 a 5 146". The eddying motion near the vertex is 
examined, in some detail, for the wedge angle a = 135". In  the limiting case of a = 
R, corresponding to a semicircular-shaped sector, the particular solution is found to 
exhibit singular behaviour. However, this singular nature is found to be spurious, as 
a bounded particular solution can be constructed with the aid of one of the 
eigensolutions. Results are given for no-slip and shear-free conditions on the circular 
boundary of the sector for the purpose of comparison. 

1. Introduction 
Fluid motions in which inertia effects are negligible have been widely studied. 

Interest in these Stokes flows is due, at least in part, to the linear form of the 
governing equations which yield, in many cases, closed-form solutions. Owing to the 
simple, explicit nature of these solutions they generally yield local information about 
the flow more readily than a full-scale numerical solution and hence they are often 
a good starting point for developing a clear physical understanding of a particular 
flow. Of special interest here are Stokes flows in the neighbourhood of a sharp corner. 
Such flows are particularly interesting because of the way in which local (near-the- 
corner) and far-field effects compete for dominance in the neighbourhood of the 
corner or vertex. This dominant behaviour near the vertex, of course, depends on the 
opening or wedge angle of the corner since larger opening angles allow greater 
opportunity for the physical processes far from the vertex to penetrate and influence 
the local behaviour. However, the dominant behaviour near the corner and hence the 
local flow structure also depends upon the specific nature of the local and far-field 
effects producing the motion. Moffatt (1964) describes several corner flows which are 
either driven by local effects such as prescribed boundary velocity at the vertex or 
by a disturbance located far from the corner. Locally driven flows are described by 
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a particular solution of the governing system, which in Moffatt's case satisfies 
inhomogeneous conditions on the radial boundaries corresponding to the prescribed 
boundary velocity. If the flow is driven by a disturbance in the far field, the flow is 
described by eigenfunctions of the homogeneous system. Moffatt ( 1964) pointed out 
that for some ranges of the wedge angle, a, these eigenfunctions could give rise to an 
infinite cascade of ' corner eddies ' of diminishing size and circulation strength as 
distance from the vertex decreased. The eddy patterns, although independent of the 
nature of the far-field disturbance in a qualitative sense, require complete 
specification of the disturbance in order to determine their location and scale. Lugt 
& Schwiderski (1965) placed the results of Moffatt (1964) on a firm foundation by 
proving the completeness of the set of eigenfunctions under the condition that the 
fluid velocity vanishes at the vertex. 

The formation of an infinite sequence of eddies near a boundary in a viscous fluid, 
although curious, is quite plausible. A useful physical interpretation for the 
formation of corner eddies in Stokes flow was given by Jeffrey & Sherwood (1980). 
Jeffrey & Sherwood note that Stokes flows dissipate the least amount of energy for 
a given set of boundary velocities (cf. Batchelor 1967, p. 227). Hence the eddies, 
which in a sense approximate rigid-body rotation, may be the preferred flow 
structure, i.e. the structure required in order to minimize the dissipation of 
mechanical energy. This interpretation is supported by the fact that corner eddies 
cease to exist (except perhaps under rather special circumstances) for corner angles 
a greater than some angle a = al, say. It would seem that less straining is required 
of a flow with open streamlines for larger corner angles so that beyond a certain angle 
a = al, eddies are less efficient in minimizing energy dissipation and hence do not 
appear. 

Of course in any finite domain with the flow driven locally (near the vertex) the 
global solution for the resulting flow will be a superposition of the particular solution 
and the eigensolutions. In such a case the appearance of corner eddies depends on the 
relative dominance of the leading eigensolution with respect to the particular 
solution in the neighbourhood of the vertex as well as on the wedge angle a. Such a 
case was considered by Liu & Joseph (1977) in which the motion in a liquid-filled 
wedge-shaped trench was driven by a difference of temperature between the radial 
surfaces. The shape of the free liquid surface, which comprised the remaining 
boundary of the sector, was determined in the course of the analysis. The complete 
solution for the motion was found by utilizing the biorthogonal properties of the 
eigenfunctions. This procedure led to an explicit expression for the coefficients in the 
eigenfunction series. In  the study of Liu & Joseph (1977) wedge angles were confined 
to the range 0 < a < in for which corner eddies do not appear in the flow even 
though corner eigenfunctions do. This is because in this range of a the particular 
solution (corresponding to the heating condition of Liu & Joseph) dominates the 
leading corner eigenfunction in the neighbourhood of the vertex. 

Another interesting aspect of corner convection concerns the apparent singular 
behaviour of the particular integral of the Stokes equations which sometimes arises 
for certain isolated and distinct values of the corner angle a. This singular behaviour 
presents a paradox since little physical justification can be found for the 
unboundedness of the solution. This phenomenon arises in a number of different 
physical contexts. Sternberg & Koiter (1958) examine the stress distribution in an 
elastic wedge of opening angle u subjected to a couple which is concentrated at  the 
vertex. The stress components are shown to be unbounded at  all points in the wedge 
when the angle a = a* x 257". This problem is analogous to the cases of Stokes flow 
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discussed here since the stress components of Sternberg & Koiter (1958) are derived 
from a biharmonic function, i.e. the Airy stress function. Dempsey (1981) resolved 
the apparent paradox for a = a* by introducing more general stress functions which 
give rise to logarithmic stress singularities a t  the wedge vertex. More recently, Ting 
(1984) has obtained a uniformly valid solution which is bounded for a near a* and 
reduces to Dempsey's result for a = a*. Similar paradoxical behaviour arises for 
systems governed by Laplace or Poisson equations. Moffatt & Duffy (1980) examine 
Poiseuille flow in a duct whose cross-section has a sharp corner. In this circumstance 
the axial velocity, which satisfies a Poisson equation, exhibits singular behaviour 
(through the particular solution) for the corner angles a = and $x.  Moffatt & Duffy 
resolve the singular behaviour at  these critical angles by using appropriate 
components of the homogeneous solution to compensate for the singularity in the 
particular solution. Ting (1985) uses similar reasoning in order to resolve the singular 
stresses which arise in an elastic wedge subjected to uniform antiplane shear 
tractions for wedge angles of x and 2 x .  A similar approach will be shown to be of 
value in treating this paradoxical behaviour as it arises in the corner convection 
under study here. 

In this paper we examine buoyancy-induced Stokes flow in a sectorial region for 
wedge angles a in the range 0 < a < 7c. We consider here skew-symmetric flows only 
since the underlying methodology is quite similar for symmetric motions in the 
sector. Simple criteria for the appearance of corner eddies are discussed. A specific 
example corresponding to isothermal heating and cooling of the radial boundaries of 
the sector is examined in detail. It is shown that this particular set of thermal 
conditions may result in corner eddies within the wedge angle range 126' 5 a 5 146'. 
The detailed structure, location and scale of the corner eddies for the case a = 135' 
are examined. The singular nature of the particular solution that arises for a = 7c is 
resolved by superimposing an appropriate member of the eigenfunction series on the 
particular solution in order to compensate for the spurious singularity. Results for a 
zero velocity slip and also a shear-free condition on the circumferential boundary of 
the sector are discussed. 

2. Analysis 
Consider the fluid-filled circular sector of opening or wedge angle a and radius R 

shown in figure 1. Attention is focused here upon sectors with opening angle 0 < 
a 6 x .  Note that the specific case a = x corresponds to an enclosure in the shape of a 
semicircular duct with a differentially heated floor section. It is expected that 
differential heating of the sector boundaries (the precise nature of which will be 
specified later) gives rise, at least in the neighbourhood of the vertex F =  0, to a 
steady, laminar two-dimensional fluid motion. It is also assumed that physical 
properties such as kinematic viscosity v, thermal diffusivity K and expansion 
coefficient B are constant while changes in density p are small (and linear with 
temperature) and hence affect the motion only through the generation of buoyancy. 
If the boundary heating is not too strong, the present conditions suggest an increase 
in density along any circumferential path traversed in the direction of decreasing 8. 
Therefore an overall clockwise recirculation pattern should prevail in which more 
dense fluid descends along the boundary 8 = -4a and less dense fluid rises adjacent 
to the boundary 8 =$a. However, it will be demonstrated later that this simple 
unicellular motion may not exist for certain heating conditions and opening angles 
a. In the case of a small driving temperature difference on the radial boundaries, 
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FIQURE 1. Fluid-filled sector of opening angle a. 

circulation in the sector is weak and energy transfer, to lowest order, i s  dominated 
by conduction (see Liu & Joseph 1977) so that 

V2T = 0, (2.1) 

where fluid temperature T has been made dimensionless with an appropriate 
characteristic temperature difference y ,  

T = ( - q ) / y ,  

and the subscript zero denotes a reference condition. It is demonstrated by Liu & 
Joseph (1977) that in this Stokes limit there exists in the sector a balance between 
pressure, viscous and buoyancy effects so that, in addition to 

v - u  = 0, 
fluid velocity is governed by 

Vau-T(e,sin8-e,c~sB)-Vp = 0, (2.3) 

in which dimensionless fluid velocity u,  pressure p and radial coordinate r are defined 
in terms of their dimensional equivalents Is, p, and F: 

uv p + Po p o s  e F 
u=- , r = -  

It is important to note that even under arbitrary heating conditions 8 region in the 
neighbourhood of the sector vertex r = 0 can always be found in which the viscous- 
dominated results (2.1) and (2.3) apply. 

Eliminating pressure from (2.3) and introducing the stream function $ in order to 
satisfy (2.2), 

gPyR2 ’ = Po 9PYR R‘ 

a$ ug = -- 1 a$ 
rae7 ar ’ 

u =-- 

yields the following fourth-order equation for $ : 

V4$ = - sine--+-- ( : co:e:g7 
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where $( r ,  0) must satisfy the conditions of impermeability and zero velocity slip on 
the boundaries of the sector 

a9 @(l,S) = -(l)I9) = 0. 
ar 

For given thermal conditions on the radial and circumferential boundaries, solution 
of (2.1) yields the right-hand side of (2.4) as a known function, g ( T , 6 )  say, which 
serves to drive the flow in sector. The system (2.4)-(2.6) is identical to that governing 
the transverse deflection of a thin plate built-in at  the edges and subjected to a 
pressure distribution on its surface which is proportional to g(r, 0). It is of interest to 
consider the general nature of solutions to (2.4). For instance, it seems physically 
reasonable to expect that under some circumstances, for example small a, the fluid 
motion near the sector vertex would be determined completely by heating conditions 
in the neighbourhood of T = 0. For larger opening angles it is reasonable to expect 
that the effect of far-field conditions may more easily penetrate into the vertex region 
and hence influence this local behaviour. This independence (for small r )  of the 
remote geometry for small wedge angles was observed by Moffatt & Duffy (1980) in 
the case of Poiseuille flow through a straight duct whose cross-section has a sharp 
corner. 

Equations (2.4) and (2.5) are satisfied by superposing a particular solution, @p) 

which satisfies (2.4) and (2.5) with solutions satisfying the homogeneous form of (2.4) 
along with the conditions (2.5). The solutions are combined in such a manner that the 
condition of zero velocity on the circumferential boundary (2.6) is satisfied. For 
simplicity we consider here only the case of a stream function symmetric in 6, i.e. 
skew-symmetric flows in the nomenclature of Moffatt (1964) and Lugt & Schwiderski 
(1965). From (2.4), (2.5) and (2.6) it is evident that such flows correspond to thermal 
boundary conditions yielding even functions g(r,  8). Biharmonic functions cor- 
responding to skew-symmetric motions are given by 

The parameter A must satisfy the requirements 

sin ha = - A sin a, 

Re@) > 0 

(2.7) 

in order that (2.5) is satisfied and fluid velocity vanishes a t  the sector vertex, r = 0. 
It is demonstrated by Lugt & Schwiderski (1965) that the functions (2.7) with the A 
determined by (2.8) form a complete set under the restriction (2.9). The sequence of 
eigenvalues A, corresponding to (2.8) has been discussed by Moffatt (1964), Lugt & 
Schwiderski (1965) and Liu & Joseph (1977). For wedge angles less than a value 
a, z 146' the A, form a countable infinity of complex-conjugate pairs. As a increases 
from a, to 7c the number of real solutions of (2.8) increases from one to infinity. When 
a = 7c all eigenvalues are real. 

The full solution satisfying (2.4)-(2.6) is then 

(2.10) 
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where the constants AAn are complex when An is complex and are chosen so that the 
condition of zero velocity on the circumferential boundary (2.6) is satisfied. Since the 
stream function is real-valued, (2.10) may be simplified to 

(2.11) 

For opening angles less than a, the leading eigenvalue A, = A,, + ih,, and the leading 
eigenfunction $Al are complex. Since the solutions of (2.8) occur as conjugate pairs 
(for a < a,) and since $xl = $Al it follows from the reality of $ that Axl = AAl. 
Therefore, the leading term in the summation of (2.11) is of the form 

where 
cos [ (A,  + l)+a] 

fi(B) = cos[(A,+l)B]- cos [(A,- l)$a] 
cos [ (A,  - 1) 81. 

It is evident that the leading term (2.12) dominates the solution (2.11) near the sector - 
vertex r = 0 provided 

$, = 0[r~1r+~], r+O. (2.13) 

Whether or not (2.13) is satisfied depends on the opening angle a and on the thermal 
boundary conditions. It is of interest to note that along any radius in the sector the 
term (2.12) changes sign with unbounded frequency as the sector vertex is 
approached. This oscillatory nature was first noticed by Moffatt (1964), who 
interpreted the corresponding corner flow as an infinite sequence of eddies whose size 
and strength diminishes with decreasing r. It is also evident from (2.12) that the 
precise nature of this localized eddy sequence depends on conditions far from r = 0 
through the constant AA1. Hence the appearance of corner eddies in the present case 
depends upon the wedge angle a and the relative dominance of the first eigenfunction 
with respect to the particular solution $p, 

3. The sector with isothermal radial boundaries 
As an illustration of the above ideas we consider, specifically, the fluid-filled sector 

of opening angle a with adiabatic circumferential boundary at ?= = R and isothermal 
radial boundaries a t  temperatures Fh and z corresponding to 0 = &x and --;a, 
respectively. Then, with y = Th - li, and = li, the thermal conditions become 

This set of conditions results in an unbounded energy flow at the wedge vertex and 
hence is non-physical, but nevertheless serves well for a study of the fluid motion (cf. 
53.5). A similar system was considered by Liu & Joseph (1977) in which the rigid 
boundary r = 1 is replaced by a free liquid surface. In that study the shape of the 
liquid surface was determined as part of the analysis while special attention was 
given to opening angles in the range $ 2  a > 0 for which corner eddies do not appear 
for the stated heating conditions. 

3.1. A particular solution 
The temperature field which satisfies (2.1) and the conditions (3.1) is independent of 
r :  

T = (B+&)/a. (3.2) 
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Introducing (3.2) in (2.4) yields 
- cos 6 

ra  
V4$ = -* 

Substitution of the trial particular solution 

$p = r3H(6) 

in (3.3) and noting the conditions 

on the radial surfaces yields 

where 

6 
16a 

4, = r3[B~~~6+-Dcos3~--s in6] ,  

(&) sin(+) --D cos (s) 
cos ($a) 

B =  

(3.3) 

(3.4) 

(3.5) 

3.2. Corner eddies 
Since $p = O(r3)  it follows from (2.13) that corner eddies may exist for the present 
heating conditions for wedge opening angles a( < a,) such that A,, < 2. From (2.8) it 
is easily shown that the critical angle corresponding to A,, = 2, a = a2, say, is given 
by the equations 

sin ( 2 4  cosh (Ali a2) = - 2 sin a2, 

cos ( 2 4  sinh (Ali a2) = - Ali sin a2. 

From these equations one calculates 

a2 x 126", A,, x 0.506. 

It is clear then that in the present circumstance corner eddies may appear for 
opening angles in the approximate range 126" 5 a 5 146'. Eddies certainly will exist 
within this range provided that the conditions on r = 1, (2.6), do not result in the 
vanishing of the coefficient AA1. If AA1 = 0 corner eddies will not appear since A,, > 
2 ( n  > 1) for all wedge angles in the range of interest, cf. Lugt & Schwiderski (1965). 
It is noted that thermal conditions different from (3.1) may lead to a quite different 
wedge-angle range for the appearance of eddies, or no eddies at all. For example, if 
the boundary 6 =$a is heated uniformly with a flux q along its length and a 
sinusoidal variation of temperature is imposed on F = R it is easy to show that in this 
case 

T - q  - r(sin(O++)) 
-- , a <in, 

cos a 

where k is the fluid thermal conductivity. The particular solution is then of the form 

@p = r4c(6), a < in. 
In  this case corner eddies may be observed for values of a with A,, < 3 corresponding 
to wedge angles only slightly greater than 80'. 

16 FLM 221 
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3.3. Singular behaviour for a = x 
The particular case a = x, corresponding to a semicircular duct is of special interest. 
It is shown by Lugt & Schwiderski (1965) that, as a approaches r ~ ,  increasing 
numbers of (leading) eigenvalues A,, A,. . . are real-valued. Hence for a near R 

1G. = 1G.p +AA1 $Al +A& @Az + * * * 9 

where the A,, AAn and @An are real. For a = 71: all eigenvalues are real and 

h , = n ,  n = 1 , 2 , 3  .... 
The eigenfunctions are then 

+,,, = rn+l{cos[(n+ 1)8]+qncos[(n-l)8]), 

where qn = -1im 

Note, however, that the coefficients in the particular solution (B and D in (3.5) and 
(3.6)) become unbounded in the limit a+ R .  Such unexpected singular behaviour at  
one or more isolated values of the wedge angle a has been observed before in various 
physical contexts, see for example Sternberg & Koiter (1958), Dempsey (1981) and 
Ting (1984). Moffatt & Duffy (1980) obtain bounded results for Poiseuille flow in a 
duct whose cross-section has a sharp corner by simply noting that the singular 
portion of the particular solution at  the critical angle is compensated for by one or 
more components of the eigenfunction series. A similar approach was taken by Ting 
(1984, 1985) and will be adopted here. 

Near a = x we take 

lG. = 1G.p + W 1 G . A 2  + c AAn *An> (3.7) 

where we have appended to the right-hand side of (2.10), without loss of generality, 
the second eigenfunction $Az (which is O(r3)  in the limit a+x) with the a-dependent 
multiplier C(a).  The function C(a)  is constructed so that 

n 

1 
16x 

+ - [+os 38-2 cos 8 - 8 sin 81 + O(a - x)), a --f x, (3.9) 

1 lG.Az = r3{cos 38 + 3 cos 8 - 3 cos 8(a - q2 + - [(COS 38 
x 

+ 3 cos 8) log r -2 cos 8-8 sin 38-38sin 8](a- R ) , +  O ( ~ - Z ) ~ ) ,  a + x. (3.10) 

Let C(a) = C3(a-n)-3+ C2(a-x)-2+ C,(a-x)-1, a + x, (3.11) 

where C,, C, and C, are constants to be determined by (3.8). Substituting (3.9), (3.10) 
and (3.11) in (3.8) we obtain 

c, =-A, c, = 0 ,  c, =-1 32' 
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Hence the modijied particular solution, $p, corresponding to the special case a = x is 

r3 
lim ($p+C(a)$A2) = ---(($-logr)[cos38+3 ~0~8]+8[sin38+sin8]} 
a m  32x 

* 

og r ]  $A* + r3 @sin 38 + sin 81). 
1 $ = - - - { [ L - ]  

32x ‘ or 

It can be easily shown that $p satisfies (3.3) along with the conditions on the radial 
boundaries for a = x and hence is a bounded particular solution and replaces (3.4) in 
this special case. 

3.4. Evaluation of the AAn 
The stream function in the sector is given by 

(3.12) 
n 

where for complex A,, the real part of the terms AAn$An is understood. If A, is 
complex then the corresponding term in (3.12) is of the form 

where E ,  and Fk are real-valued constants. In any case, the constants are determined 
by the condition of zero velocity on the circumferential boundary, r = 1 ,  

(3.13) 

(3.14) 

In the study of Liu & Joseph (1977) the eigenfunctions (2.7), with the An from (2.8), 
are used to generate biorthogonal series, the properties of which are exploited for the 
direct computation of the constants. The conditions on r = 1 in the reference 
configuration used by Liu & Joseph are of course the ones appropriate to a free liquid 
surface and as such are quite distinct from (3.13) and (3.14). Here we use a simple 
alternative approach for the determination of the AAn suggested by Carrier & Shaw 
(1950). The (even) functions on the right-hand side of (3.13) and (3.14) are made 
orthogonal to the functions ~0~(2kn8 /a )  on the interval -+a < 8 < ;a by appropriate 
choice of the constants AAn (or En and F, as the case may be), i.e. 

~ ~ ~ ( l . s ) + C A n n ~ ( l ; e ) ] c o s - d e  21~x8 = 0, k = 0, 1, 2 . . .  , 

n a 

The infinite system that results for the AAn is truncated such that the conditions 

max 1$(1, 8)l/l$max(r, e)l < lo-*, 

15-2 
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n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11  

E,  x 105 

8580 
42.11 

- 10.10 
2.822 

0.357 1 

0.06278 

0.04523 

-0.9455 

-0.1454 

- 0.03280 

-0.01494 

F, x 1 0 5  

2916 
49.05 
0.1853 

0.8742 

0.2850 
0.1682 
0.09946 

-0.06009 
0.200 1 

- 1.423 

-0.4950 

TABLE 1. En and F,, for u = 120’ 

are satisfied where @max(r, 0) and [(a@/ar)(r,  0)Imax denote the maximum values of the 
stream function and ug in the sector. It was found that in the range 0 < a < n 
investigated here, no more than sixteen terms in the expansion (3.12) were required. 
Table 1 lists the constants En, F, for the case a = 120’. 

3.5. Relevance to the case of ‘almost isothermal’ radial boundaries 
The present thermal boundary conditions (3.1), as noted earlier, are non-physical 
owing to the unbounded energy flow a t  the wedge vertex. It is appropriate here to 
comment on the physical relevance of the wedge flow which evolves from these non- 
physical thermal conditions. We demonstrate below that the motion in the wedge is 
altered, to only a negligible extent over most of the wedge volume, when the present 
(singular) thermal conditions are replaced by physically realizable conditions 
differing from those of (3.1) only in a small neighbourhood of the vertex. It is 
sufficient to consider the partial sector of opening angle a with insulated 
circumferential boundaries r = 1 and r = E (4 1) and isothermal radial surfaces, T(r,  
ia) = 1, T(r,  -+a) = 0. This sectorial region differs from the full sector only by the 
small ‘cutout’ vertex region of dimension E .  Clearly, energy flow in this slightly 
perturbed domain is bounded. Temperature, T, and @, in the partial sector are still 
given by (3.2) and (3.4)-(3.6), respectively; however, to the expression for 4, (2.10), 
we must append the symmetric biharmonic functions 

where CAn(0) corresponds to the bracketed part of (2 .7)  and the parameters A ,  are 
given by (2 .8)  as before. The full expression for @ in the partial sector is then 

(3.15) 

Note that the constants BA, are suppressed in the case of the full sector in order to 
satisfy the no-slip condition a t  the vertex. Formally, the constants A,, and BA, in 
(3.15) are determined by the condition of zero fluid velocity on the two 
circumferential boundaries, r = E ,  1. However, it  is only necessary here to consider 
the condition @ ( E ,  0) = 0, i.e. 

(3.16) 
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FIGURE 2. Stream function contours $/emax = 0.1, 0.2, 0.4, 0.6, 0.8 with gmaX = - 7.36 x for 
the sector with no-slip boundary (r = 1) and a = 90'. 

Note that the magnitude le1-'n1 = and recall that A,, > 1 for the range of a 
under consideration (cf. Lugt & Schwiderski 1965) and that $ J E , ~ )  = O ( E ~ ) .  It 
follows then from (3.16) that in the limit as the partial sector is made to approach the 
full sector geometry, i.e. as E --z 0 

No such restriction is in effect for the AAn and therefore we expect the AAn to behave 
in a regular manner in this limit and smoothly approach the values appropriate for 
the full sector ( E  = 0). Clearly then, in the 'almost singular' case E Q 1, the terms 
BA,r1-"n make a negligible contribution to the sum in (3.15) except perhaps in the 
immediate vicinity of the boundary r = 8. This insensitivity of the global motion to 
alterations in conditions over a portion of the boundary is also predicted by direct 
consideration of the systems for T and $, i.e. (2.1) and (2.4) along with their 
respective boundary conditions. These systems have direct analogues in the theory 
of elastostatics. For example, the system governing T also governs the out-of-plane 
displacement in an elastic wedge with uniform displacement specified along the 
radial boundaries when the circumferential surface r = 1 is traction-free. In  such 
cases Saint-Venant's Principle asserts that the effect of stresses applied over a 
portion of the boundary of a body is negligible a t  distances that are large compared 
with the linear dimension of that boundary portion (cf. Boussinesq 1885). Hence, in 
the present circumstance it is anticipated that alteration of the thermal conditions 
over a small section of the wedge boundary of dimension E about the wedge vertex 
(i.e. the case of almost isothermal radial boundaries) will affect the resulting motion 
to a negligible degree except in the small neighbourhood of dimension E about r = 0. 

3.6. Results 
Contours of $ for a = 90" are plotted in figures 2 and 3. The contours of figure 3 
correspond to a condition of zero shear stress on the circular boundary r = 1, that is, 
the condition 

(3.17) 

replaces the second part of (2.6). Note that in each case the motion in the sector is 
unicellular with warmer fluid flowing radially outward (ascending) along the heated 
surface and cooler fluid flowing radially inward (descending) along the cooled 
boundary. Corner eddies are absent from the flow as predicted in the discussion of 
83.2. Comparison of figures 2 and 3 indicates that the shear-free condition (3.17) leads 
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FIQURE 3. Stream function contours = 0.1, 0.2, 0.4, 0.6, 0.8 with @,, = - 1.14 x for 
the sector with shear-free boundary (7 = 1 )  and a = 90". 

2.4 1 1 1  1.0 
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FIQURE 4. Variation of the maximum stream function, +,,,,, and the location of the maximum 
stream function, rmax, with wedge angle a for no-slip (-) and shear-free (---) conditions on 
r = l .  

to more intense circulation in the sector. Also, the maximum value of the stream 
function occurs at a distance from the sector vertex, r,,,, that is greater than 
for the no-slip case. This is to be expected as the quenching effect on the flow due to 
the no-slip condition on the boundary r = 1 is absent in figure 3. This behaviour was 
evident for all wedge angles; however, the distinction between the no-slip and shear- 
free cases diminishes with decreasing a since the circumferential boundary represents 
a smaller proportion of the complete sector boundary for small a. This effect is shown 
clearly in figure 4 in which the value of the maximum stream function, and its 
radial position in the sector, rmax, are plotted versus wedge angle in the range 0 < 
a < 71 for both the no-slip and shear-free cases. From this figure it is also clear that 
the radial boundaries strongly attenuate the circulation as a is decreased. A t  the 
same time, the centre of the cell moves away from the vertex, toward the upper 
portion of the sector where the influence of the converging radial surfaces is least. 

The radial velocity distribution a t  the location r = rmax is plotted as EL function of 
@/a for the opening angles a = 60°, 80", 120°, 160" and 180" in figure 5 .  It is evident 
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FIGURE 5. Distribution of radial velocity, u,, along r = rmax, no-slip on r = 1. 
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FIGURE 6. Distribution of circumferential velocity, ug, along the radius 8 = 0, no-slip on T = 1. 

from this figure that the radial velocity does not increase monotonically with 
increasing a. As the wedge angle increases from acute values the radial velocity 
increases owing to the lessening effect of viscous resistance. This throttling of the flow 
(for small a )  comes about as a consequence of the symmetric counterflow between the 
two radial surfaces. On the other hand, as the wedge angle increases further, 
becoming more obtuse, isotherms in the sector are less-closely spaced (equation (3.2)) 
and on average are not closely aligned with the gravity vector. The driving force for 
the motion, i.e. the right-hand side of (3.3), is therefore diminished and the radial 
velocity in the sector falls off slightly with increasing a in the range 120' 5 a 5 180" 
as shown in figure 5 .  The magnitude of the velocity component uo, figure 6, increases 
steadily with a. Peak circumferential velocity is found on the vertex side of the cell 
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FIGURE 7. Stream function contours $I$' = - 2, - 1, 0, 0.4, 0.5 in the vicinity of the vertex 
showing the first corner eddy for the case a = 135" with no-slip on r = 1 .  The maximum stream 
function value for the first eddy is $' = 9.06 x 

FIGURE 8. Stream function contours = 0.1, 0.2, 0.4, 0.6, 0.8 with $max = - 1.18 x for 
the sector with no-slip boundary (T = 1) and a = 180". 

centre location r = rmax for larger wedge angles, a 2 120". For decreasing opening 
angles the centre of the cell moves toward larger values of r (cf. figure 4) and hence 
peak values of ug occur nearer to the circumferential boundary of the sector. 

The first corner eddy for the case a = 135" is shown in figure 7. Only the single 
corner eddy shown may be depicted in this figure (aside from a small portion of the 
main cell) since the dimension of consecutive eddies decreases quite rapidly for a = 
135". It is demonstrated by Moffatt (1964) that the ratio of dimensions of any two 
consecutive eddies is approximately es €or the case a = 135" and the strength of 
consecutive eddies falls off even more rapidly. In figure 7 the approximate location 
of the zero streamline separating the main cell from the first corner eddy is given by 
r = 2 x at 8 = 0 while the circulation strength of the first eddy and the main cell 
are separated by more than 15 orders of magnitude. It is of interest to note that 
within the eddy region the motion is exactly counter, in a rotational sense, to what 
would be anticipated by consideration of the local density field alone. That is, less- 
dense fluid falls adjacent to the warmer radial surface while more-dense fluid rises 
adjacent to the cooled surface. This circulation pattern, however, seems quite 
natural if it is recalled that the most dominant eigenmotion is not driven by buoyant 
effects but instead arises as a consequence of the minimization of local energy 
dissipation subject to the driving shear of the main (buoyancy-driven) cell. 

The case a = x, figure 8, corresponds to a semicircular duct heated over one half 
and cooled over the other half of the plane boundary. Less-dense fluid in the left 
portion (0 > 0) of the sector is displaced by heavier, cooler fluid from the right-hand 
portion (0 < 0) moving across the lower surface 8 = ++a. 

The authors wish to acknowledge the many helpful suggestions and alternative 
points of view offered by Professor J. L. Bassani during the course of this work. 
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